EXAM GROUP THEORY, January 30th, 2020, 8:30am-11:30am, Aletta Jacobshal 01. Put your name on every sheet of paper you hand in. Please provide complete arguments for each of your answers. The exam consists of 4 questions. You can score up to 9 points for each question, and you obtain 4 points for free. In this way you will score in total between 4 and 40 points. in S_7 . (1) Consider the permutations $\sigma = (1\ 2\ 3\ 4)(2\ 3\ 4\ 5)(4\ 5\ 6\ 7)$ and $\tau = (1\ 2\ 3\ 4)(2\ 3\ 4\ 5)(6\ 7)$ | (a) [2 points.] Write $\tau = \pi^3$ for some $\pi \in S_7$.
(b) [1 point.] If $\pi \in S_7$ is a k-cycle with $k \in \{2, 4, 5, 7\}$, show that π_k^2 is a k-cycle as | |--| | well. [1 point.] If $\pi = (a_1 a_2 a_3 a_4 a_5 a_6) \in S_7$ is a 6-cycle, show that π^3 is a product of | | three disjoint 2-cycles. [2 points.] Show that σ cannot be written as a third power in S_7 . | | [2 points.] Prove that elements of order 3 in S_7 can not be expressed as the third power of any element in S_7 . | | (f) [1 point.] Contrary to (e), find $\gamma \in S_9$ of order 3 such that γ is a third power in S_9 . | | (2) Consider the groups G₁ = (Z/100Z)[×] and G₂ = (Z/110Z)[×] and G₃ = (Z/132Z)[×]. (a) [3 points.] Show that these three groups have the same number of elements. (b) [2 points.] Show that G₁ and G₃ are not isomorphic. (c) [3 points.] Show that G₁ and G₂ are isomorphic (hint: probably the shortest way to do this, is to use both the Chinese Remainder Theorem and the theory of elementary divisors). (d) [1 point.] Give a non-commutative group with the same number of elements as G₁. | | (3) This problem considers the symmetry group of the so-called "hexagonal lattice". We begin by introducing this group, as a subgroup of the group of isometries of the Euclidean plane. Put $v_1 = \binom{1}{0} \in \mathbb{R}^2$ and $v_2 = \binom{-\frac{1}{2}}{\frac{1}{2}\sqrt{3}} \in \mathbb{R}^2$. Take $L = \mathbb{Z} \cdot v_1 + \mathbb{Z} \cdot v_2$, it looks like: | | | | * | | | | The group G we deal with consists of all issues G and G | | The group G we deal with, consists of all isometries of the plane which map L to L : $G:=\left\{\iota\in \mathrm{Isom}(\mathbb{R}^2)\ \ \iota(L)=L\right\}.$ | | To describe the elements of G , we first consider the ones that moreover map $\binom{0}{0}$ to itself. These form a subgroup $H \subset G$, with $H \cong D_6$ (the dihedral group of order 12). Another subgroup of G is described as follows. For $v \in L$ we denote by τ_v the translation over v , so $\tau_v(x) = x + v$ (any $x \in \mathbb{R}^2$). Then | $T := \{ \tau_v \mid v \in L \}$ $\sigma \in H.$ (You may accept these statements without proving them.) is a subgroup of G. Any $\iota \in G$ can be written as $\iota = \tau_v \circ \sigma$ for some $\tau_v \in T$ and some - (a) [2 points.] Show that if $\tau_v, \tau_w \in T$ and $\sigma_1, \sigma_2 \in H$ then $(\tau_v \sigma_1) \circ (\tau_w \sigma_2) = \tau_{v+\sigma_1(w)} \sigma_1 \sigma_2$. - (b) [2 points.] Show that if $\tau_v, \tau_w \in T$ and $\sigma \in H$ then $(\tau_w \sigma) \tau_v (\tau_w \sigma)^{-1} = \tau_{\sigma(w)}$. - (c) [1 point.] Prove that T is normal in G. - (d) [2 points.] Prove that $G/T \cong D_6$ (the dihedral group of order 12). - (e) [2 points.] Recall $v_1 = \binom{1}{0} \in \mathbb{R}^2$; by definition $\tau_{v_1} \in T$. Note that $-id \in H$. Find the conjugacy class in G of $\tau_{v_1} \circ (-id) \in G$. - (4) In this (final) exercise we apply the "orbit-counting formula" in order to calculate the number of monomials of a given degree. Having variables x_1, x_2, \ldots, x_n , a monomial of degree d is an expression $x_1^{j_1}x_2^{j_2}\cdot\ldots\cdot x_n^{j_n}$ with all $j_k\in\mathbb{Z}_{\geq 0}$ and $\sum j_k=d$. For example, the monomials of degree 3 in the variables x,y are x^3,x^2y,xy^2,y^3 . One obtains all monomials of degree d in the n variables as follows. Denote by X the set of all functions $f: \{1, 2, \ldots, d\} \to \{x_1, x_2, \ldots x_n\}$. Given $f \in X$, one obtains a monomial of degree d by taking the product $f(1) \cdot f(2) \cdot \ldots \cdot f(d)$. Note that given a permutation $\sigma \in S_d$ and $f \in X$, also the composition $f \circ \sigma \in X$. This defines $S_d \times X \to X$ $(\sigma, f) \mapsto \sigma * f := f \circ \sigma$. - (a) [2 points.] Show that $\sigma * f$ defines an action of S_d on X. - (b) [1 point.] Show that $\#X = n^d$ - (c) [2 points.] Show that $f, g \in X$ yield the same monomial, if and only if the orbit $S_d * f$ of f equals the orbit $S_d * g$ of g. - (d) [2 points.] For $\tau \in S_d$ a 2-cycle, show $\#\operatorname{Stab}(\tau) = n^{d-1}$. - (e) [2 points.] Take d = 4, and use the "orbit-counting formula" to determine the number of monomials of degree 4 in n variables.